General Melting Point Prediction Based on a Diverse Compound Data Set and Artificial Neural Networks

نویسندگان

  • Muthukumarasamy Karthikeyan
  • Robert C. Glen
  • Andreas Bender
چکیده

We report the development of a robust and general model for the prediction of melting points. It is based on a diverse data set of 4173 compounds and employs a large number of 2D and 3D descriptors to capture molecular physicochemical and other graph-based properties. Dimensionality reduction is performed by principal component analysis, while a fully connected feed-forward back-propagation artificial neural network is employed for model generation. The melting point is a fundamental physicochemical property of a molecule that is controlled by both single-molecule properties and intermolecular interactions due to packing in the solid state. Thus, it is difficult to predict, and previously only melting point models for clearly defined and smaller compound sets have been developed. Here we derive the first general model that covers a comparatively large and relevant part of organic chemical space. The final model is based on 2D descriptors, which are found to contain more relevant information than the 3D descriptors calculated. Internal random validation of the model achieves a correlation coefficient of R(2) = 0.661 with an average absolute error of 37.6 degrees C. The model is internally consistent with a correlation coefficient of the test set of Q(2) = 0.658 (average absolute error 38.2 degrees C) and a correlation coefficient of the internal validation set of Q(2) = 0.645 (average absolute error 39.8 degrees C). Additional validation was performed on an external drug data set consisting of 277 compounds. On this external data set a correlation coefficient of Q(2) = 0.662 (average absolute error 32.6 degrees C) was achieved, showing ability of the model to generalize. Compared to an earlier model for the prediction of melting points of druglike compounds our model exhibits slightly improved performance, despite the much larger chemical space covered. The remaining model error is due to molecular properties that are not captured using single-molecule based descriptors, namely both inter- and intramolecular interactions and crystal packing, for which examples of and reasons for outliers are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks

Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...

متن کامل

Prediction of the pharmaceutical solubility in water and organic solvents via different soft computing models

Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...

متن کامل

The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...

متن کامل

Prediction of Kinematic Viscosity of Petroleum Fractions Using Artificial Neural Networks

In this work, artificial neural network (ANN) was utilized to develop a new model for the prediction of the kinematic viscosity of petroleum fractions. This model was generated as a function of temperature (T), normal boiling point temperature (Tb), and specific gravity (S). In order to develop the new model, different architectures of feed-forward type were examined. Finally, the optimum struc...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 45 3  شماره 

صفحات  -

تاریخ انتشار 2005